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ABSTRACT: The formation of cyclopropatetrahedrane (tetracyclo[2.1.0.01,3.02,4]pentane) via
four different carbene reactions is computed using the (U)CCSD(T)(full)/cc-pVTZ//
(U)ωB97X-D/cc-pVTZ + 1.3686(EZPVE) theoretical model. Intrinsic reaction coordinate plots
confirm that each carbene is directly linked to cyclopropatetrahedrane via a unique
cyclopropanation step. Each elementary step is assessed according to the structure and energy
of its transition state.

This report assesses four carbene reactions that ostensibly
could form cyclopropatetrahedrane (1;1 Figure 1a),2,3 a

cyclopropane-fused derivative of tetrahedrane (2; Figure
1b).4−7 To date, 1 and 2 remain hypothetical constructs,

although derivatives of 24 as well as pristine 3 and 4 (Figure
1c,d)8,9 have been prepared (cf. Table S1 in Supporting
Information). Nevertheless, earlier computations suggest that 1
will be kinetically stable because (1) it occupies a deep energy
minimum on the C5H4 hypersurface and (2) none of its 21
vibrational normal modes falls below ν ̅ = 443 cm−1.2,3 Forming
1 will be challenging because (1) its computed strain energy

(ΔstrainH° = 157 kcal/mol)2a is phenomenal and (2) the
bridging CH2−group of 1 establishes a bond that connects two
inverted C atoms (i.e., each C atom has four bonds pointing in
the same direction;10−12 Figure 1a; cf. Figures S2 and S3 in
Supporting Information). Also, the long C1−C4 bond (r =
1.664 Å)2a of 1 is electron-depleted, weak, and prone to
breakage when compared with typical aliphatic C−C bonds.
Routes to 1 have been proposed, such as via a 2,4-
dihalotricyclo[1.1.1.01,3]pentane synthon (5; Scheme 1).4,5

However, carbene routes to 1 have never been investigated.

Carbene reaction intermediates are uncharged, electron-
deficient, and highly energetic.13−27 They are prized for their
ability to form a wide variety of cyclopropanes, which can be
done in two ways. The divalent C atom (:C<) can (1) insert
into a homovicinal C−H bond (e.g., carbene 6 → 2) or (2)
add to a C−C double bond (e.g., carbene 7 → 2) (Scheme
2).28 These two signature reactions are useful when building
polycycloalkanes. Thus, an examination of carbene routes to
highly strained 1 is warranted.
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Figure 1. Cyclopropatetrahedrane (1) is a cyclopropane-fused
derivative of tetrahedrane (2), which itself is one of the Platonic-
solid-like hydrocarbons that also include cubane (3) and dodecahe-
drane (4).

Scheme 1. A Proposed Retrosynthesis of
Cyclopropatetrahedrane (1)
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Four routes to 1 via four different hypothetical carbene
reaction intermediates (Scheme 3) were evaluated using the

(U)CCSD(T)(full)/cc-pVTZ//(U)ωB97X-D/cc-pVTZ +
1.3686(EZPVE) theoretical model (see Computational Meth-
ods). Paths a−c depict homovicinal C−H bond insertion
reactions within carbenes 8−10, respectively, and path d
depicts a C−C double bond addition reaction within carbene
11. The structures in Scheme 3 are drawn in a uniform manner
to emphasize the new bonds being formed (cf. Figure 2): (1)
path a, Cα−Cβ; (2) path b, Cγ−Cγ; (3) path c, Cβ−Cγ; and (4)
path d, Cα−Cβ and Cβ−Cβ. Each elementary step is
characterized in terms of its transition state (TS) structure,
activation energy (Ea), and net energy change (ΔE) (Table 1).
Intrinsic reaction coordinate (IRC) plots (Figure 3a−d) and
videos (see Supporting Information) are also provided to
demonstrate that each carbene is directly linked to 1.

Path a involves the hypothetical carbene (tetrahedryl)-
carbene (8).29 A homovicinal C−H bond insertion reaction via
TSa was confirmed by its one, and only one, imaginary
frequency (Table 1, path a), by animating the corresponding
vibration, and by plotting the IRC, which links 8 directly to 1
(i.e., 8 → TSa → 1; Figure 3a (blue)).

An intriguing aspect of the carbene itself was found. Its
computed singlet−triplet energy gap (ΔES−T)

30 of −6.7 kcal/
mol, corrected for the experimental ΔES−T of CH2 (eq 1; see
Supporting Information),31 indicates that alkylcarbene 8 has a

singlet ground state, and decidedly so. Hyperconjugation32−35

between the C1′−C4′ “banana” bond and the vacant p orbital
of the carbene’s divalent C atom is a contributing factor (cf.
Figure S1 in Supporting Information). The :CH-group of the
lowest energy conformation of 8 is bent 41 deg toward the
C1′−C4′ bond in comparison to the ·C·H-group of triplet
(tetrahedryl)carbene (i.e., 38) (Scheme 3, path a) even though
this deformation causes the C1′ atom’s four bonds to point in
one direction (i.e., C1′ is an inverted C atom; cf. Figure S2 in
Supporting Information). The distorted geometry of 8 may
assist the formation of TSa since a triangular array comprising
the C1, C1′, and C4′ atoms is already established (Figure 3a
(blue)). Thus, the high ΔH⧧ may be more prohibitive than
ΔS⧧ for the homovicinal C−H bond insertion reaction 8 → 1.

(1)

Path b involves the hypothetical carbene tricyclo[1.1.1.01,3]-
pent-2-ylidene (9). A homovicinal C−H bond insertion
reaction via TSb was confirmed by its one, and only one,
imaginary frequency (Table 1, path b), by animating the
corresponding vibration, and by plotting the IRC, which links
9 directly to 1 (i.e., 9 → TSb → 1; Figure 3b (green)).

Path c involves the hypothetical carbene trans-tricyclo-
[2.1.0.01,3]pent-2-ylidene (10). A homovicinal C−H bond
insertion reaction via TSc was confirmed by its one, and only
one, imaginary frequency (Table 1, path c), by animating the
corresponding vibration, and by plotting the IRC, which links
10 directly to 1 (i.e., 10 → TSc → 1; Figure 3c (yellow)).

Path d involves the hypothetical carbene 4-methylenebi-
cyclo[1.1.0]but-2-ylidene (11). A cycloaddition reaction via
TSd was confirmed by its one, and only one, imaginary
frequency (Table 1, path d), by animating the corresponding
vibration, and by plotting the IRC, which links 11 directly to 1
(i.e., 11 → TSd → 1; Figure 3d (red)). However, in contrast

Scheme 2. Types of Intramolecular Carbene
Cyclopropanations

Scheme 3. Four Carbene Routes to Cyclopropatetrahedrane
(1)

Figure 2. C2v-symmetric cyclopropatetrahedrane (1) comprises (a)
one 2°-C atom (α), (b) two 4°-C atoms (β), and (c) two 3°-C atoms
(γ). (ORTEP structure shows 50% ellipsoids.)

Table 1. Computed Data for Carbene Isomerizations to 1a,b

Carbene IRC path ν ̅ TS (cm−1) Ea (kcal/mol) ΔE (kcal/mol)

8 a 1164i 15.8 −50.2
9 b 915i 14.2 −24.5
10 c 961i 3.5 −29.2
11 d 329i 27.8 10.0

aCf. Scheme 3. bCCSD(T)(full)/cc-pVTZ//ωB97X-D/cc-pVTZ +
1.3686(EZPVE) theoretical model.
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to those of the homovicinal C−H bond insertion reactions
(Table 1, paths a−c), the net ΔE computed for this elementary
step is positive. This indicates a thermodynamic preference for
a cycloreversion of 1 (i.e., 1 → 11). However, 1 → 11 is
computed to have a high ΔH‡ (18.1 kcal/mol; see Supporting
Information). Of course, this enthalpy barrier is not
insurmountable even in a frozen Ar matrix (T = ca. 10 K)
under photolytic conditions.36

Computational chemistry was used to assess the viability of
forming cyclopropatetrahedrane (1) via four different carbene
reactions. The hypothesis appears to be valid because a TS was
found for each of the elementary steps (i.e., Scheme 3, paths
a−d). Furthermore, the respective IRC plots (Figure 3a−d)
reveal a direct link between each carbene and 1. The IRCs and
ZPVE-corrected single-point energies show that the homo-
vicinal C−H bond insertion reactions via H atom transfer are
exothermic but the C−C double bond addition reaction is
endothermic. The formation of 1 via a homovicinal C−H bond
insertion within trans-tricyclo[2.1.0.01,3]pent-2-ylidene (10)
requires an Ea of just 3.5 kcal/mol. The bent posture adopted
by the electron-seeking :CH-group of (tetrahedryl)carbene (8)
is akin to a house plant that is bent toward a sunlit window;

each “stalk” bends to obtain what it needs. In contrast,
stabilizing hyperconjugation is precluded in triplet (tetra-
hedryl)carbene (38) because of its half-occupied p orbital.
Thus, the triplet carbene is strictly Cs-symmetric.

■ COMPUTATIONAL METHODS
Quantum chemical calculations were performed on 1, carbenes 8−11,
transition states TSa−TSd, and intrinsic reaction coordinate (IRC)
paths a−d using the Spartan’20 (v. 1.1.4) computer program.37

Restricted SCF wave functions of molecular equilibrium geometries
and transition states were computed using a (100,434) DFT
integration grid, the RSH-GGA functional ωB97X-D,38 and
Dunning’s cc-pVTZ basis set. Unrestricted SCF wave functions
were computed for triplet-state carbenes. Normal-mode vibrational
analyses were performed at the level of geometry optimization. The
harmonic frequencies were used to obtain temperature-independent
zero-point vibrational energy (EZPVE)

39 and temperature-dependent
thermal vibrational energy (ΔvibH) values. Each reaction TS had one,
and only one, imaginary frequency, ν ̅ TS. Its vibration was animated to
verify that the motions conformed to the elementary step. An IRC
was computed to ensure that the carbene followed a direct route to 1.
Single-point energy (E) values were computed using the CCSD(T)-
(full) coupled-cluster theory method and Dunning’s cc-pVTZ basis

Figure 3. Four IRCs were computed using the CCSD(T)/cc-pVTZ//ωB97X-D/cc-pVTZ theoretical model. Routes (a)−(c) depict homovicinal
C−H bond insertion reactions within carbenes 8−10, respectively, while route (d) depicts a C−C double bond addition reaction within carbene
11.
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set. All EZPVE values were scaled by z = 1.368640 before being added
to E (T = 0 K; p = 0 atm). Relative energy values (ΔrelE) are specified
with regard to 1 ((ΔrelE = [0]). Conversion of E values to enthalpy
(HT) values was done according to eq S1 (see Supporting
Information; computational standard state: T = 298.15 K; p = 1
atm; cf. Table S2). All ΔvibH values were scaled by H = 0.95640 before
being added to the ZPVE-corrected E values. The increase in kinetic
energy, due to translations (3(1/2)RT) and rotations (3(1/2)RT),
for each nonlinear molecule was then added. Finally, RT (i.e., “pV
work” needed to expand 1 mol of ideal gas to V = 24.465 L at T =
298.15 K and p = 1 atm) was added to obtain HT (eq S1).
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